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Fully developed oil flow in a smooth circular pipe at  a mean Reynolds number of 
about 2100 was subjected to a nominally sinusoidal flow modulation at frequencies 
ranging from 0.05-1-75 Hz. It was observed that flow oscillation increased the critical 
Reynolds number and, under certain conditions, even brought about laminarization 
of the flow, which would be intermittently turbulent a t  the mean Reynolds number 
under quasi-steady (infinitely small oscillation frequency) conditions. The occurrence 
and extent of laminarization was, however, found to depend on factors such as the 
intermittency of turbulent puffs in the mean quasi-steady flow, frequency of oscilla- 
tion, etc. Two series of experiments were performed. In one series, the oscillatory 
flow was almost completely laminarized. In  the other series, the oscillatory flow was 
fully turbulent. In  both the cases, instantaneous velocities in the flow were measured 
using laser-Doppler anemometry (LDA). The instantaneous velocity was decomposed 
into time-mean, periodic and random components employing ensemble-averaging 
techniques. The experiments indicated that the laminarized oscillatory flow behaves 
very similarly to laminar oscillatory flow at either end of the Strouhal-number range 
studied. The oscillatory turbulent flow was found to depend on both the Strouhal 
number and the ratio of the oscillation frequency (f) to some characteristic frequency 
( f t )  of turbulence in the flow. The design of the present experimental facility made it 
possible to study the flow at f /ft z 1 (‘high’ oscillation frequency), a condition that 
could not be attained in most previous investigations. Another unique feature of the 
present experiment was that the viscous sublayer and Stokes layer were both large 
enough (several millimetres in thickness) to allow detailed measurements to be made 
in these regions. It was found, that a t  this high frequency of oscillation, the Reynolds 
stresses generally remained frozen at an average state during the entire oscillation 
cycle. The turbulent structure showed significant departures from equilibrium at all 
times during the oscillation cycle. As  a result, there was a net change in the time-mean 
velocity profile near the wall and a net increase in the time-mean wall shear stress 
and power loss due to friction. The observation that unsteadiness can indeed affect 
the mean flow behaviour in a significant way is new and contradicts the view presently 
held by many researchers (based on their studies at  relatively low oscillation frequencies, 
i.e. f /ft < 1) .  The data also indicated that the direct interaction between oscillation 
and the turbulent structure was essentially confined to the Stokes layer. The study 
suggests that (again contrary to the existing belief) quasi-steady turbulence models 
may not be adequate to describe unsteady flows when the time scale of unsteadiness is 
comparable to that of dominant turbulent eddies. 
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1. Introduction 
The study of unsteady shear flows is relevant to many areas of application such as 

aerodynamics, ship hydrodynamics, biofluid mechanics and wind engineering. Much 
of the study reported in the literature on unsteady flows, however, concerns laminar 
flows. Exact solutions are available for relatively simple unsteady laminar flow situa- 
tions in the classical literature (see Rosenhead 1963). Laminar flows in pipes due to 
periodic pressure gradients have been studied by Richardson & Tyler (1929), and 
Uchida (1 956) and others. The situation with regard to unsteady transitional and 
turbulent flows is less satisfactory, however. While there have been some attempts to 
analyse the problem of stability in periodic flows (e.g. von Kerczek & Davis 1974, 
1976; Hino & Sawamoto 1975; Hino, Sawamoto & Takasu 1976), much remains to 
be studied in this area. Of the laboratory experiments on periodic pipe flow that have 
been reported in the literature, most pertain to high-Reynolds-number turbulent 
flows. The earliest of such experiments were reported by Schulz-Grunow (1940). 
More recent experiments in this category are those performed by Hirose & Oka (1  969), 
Lu et al. (1973) and Acharya & Reynolds (1975). In all theseexperimentsfully developed 
turbulent pipe flow was perturbed by imposing a periodic modulation in discharge at  a 
prescribed frequency. Of these, the work of Acharya & Reynolds involved the. most 
detailed measurements such as Reynolds shear stress, though the amplitude of flow 
modulation in their experiments was less than 5 per cent of the mean. These experi- 
ments suggested that even at  that amplitude, the structure of turbulence can be 
significantly affected in the Stokes layer near the wall. Their measurements in this 
layer were very limited because of the thinness of the layer. Lu et al. experienced 
considerable difficulty in the use of hot-film anemometry as well as in analog data 
processing in their experiments on oscillatory flow of water in a circular pipe. Their 
measurements of mean and turbulent velocities did not lead to any significant 
conclusions. 

One would intuitively expect that the effects of unsteadiness on the flow structure 
will be stronger on flows in the neighbourhood of transition than on flows at very large 
Reynolds numbers. This is because transition process can be sensitive to the strong 
acceleration/deceleration in the unsteady flow. The experience with steady flows 
subjected to spatial pressure gradients has confirmed that the pressure gradients have 
a significant effect on the critical Reynolds number. Strong effects of periodic flow 
modulation on the flow characteristics at  transitional Reynolds numbers have, indeed, 
been observed in the experiments of Sarpkaya (1966) and in the more recent studies 
of Gerrard (1971) and Hino & Sawamoto (1975). From a study of the growth of dis- 
turbances in sinusoidally modulated pipe flow in the mean flow Reynolds-number 
range of 2000-5000, Sarpkaya concluded that flow pulsation increases the critical 
Reynolds number. Gerrard’s experiments related to periodic pipe flow a t  a mean 
Reynolds number of 3700 while the experiments of Hino & Sawamoto pertained to 
purely oscillatory pipe flow (i.e., at  a mean Reynolds number of zero). These latter two 
studies were mainly qualitative but they indicated that, in general, turbulence is 
inhibited during the acceleration part of the modulation cycle and enhanced during 
the retardation part. In fact, the flow, under certain circumstances, appeared to remain 
laminar during the acceleration part of the cycle. Indications of inhibition of turbulence 
or delayed transition have also been observed in some of the in-vivo studies of pulsatile 
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blood flow in the aorta of mammals (e.g. Falsetti et al. 1972; Kiser et al. 1976). How- 
ever, the instrumentation and data reduction techniques used in the blood-flow 
studies, as well as in the other laboratory studies mentioned above, were not suffi- 
ciently sophisticated to yield detailed quantitative information on the flow structure. 

There is one class of unsteady turbulent flows, however, that has been studied in 
fair detail using moderate to highly sophisticated data, reduction techniques. This is 
the unsteady turbulent boundary layer in a periodic free stream. Most of these studies 
(Karlsson 1959; Houdeville, Desopper & Cousteix 1976; Cousteix, Desopper & 
Houdeville 1977; Pate1 1977) pertain to zero pressure-gradient boundary layers 
though some experiments on adverse pressure gradient flows have been reported 
recently (Kenison 1977; Houdeville & Cousteix 1978). The experiments on the zero 
pressure-gradient boundary layers have, generally, led to the conclusion that flow 
modulation has no effect on the average behaviour of the flow and that the turbulent 
structure can still be described by quasi-steady turbulence models. A careful study of 
these investigations, however, reveals that in all these experiments, the frequency 
of flow modulation was small compared with the characteristic frequency of turbu- 
lence in the boundary layer. One can expect to find a significant effect of flow 
modulation on the average flow structure only when the modulation frequency is 
comparable to the characteristic turbulent frequency in the flow. The very recent 
report of Houdeville & Cousteix (1978) on the unsteady boundary layer in the neigh- 
bourhood of separation (where this condition is satisfied) does seem to indicate strong 
effects of flow modulation on the flow structure. Hence, the behaviour of an unsteady 
turbulent flow is not only determined by the Strouhal number (ratio of the time scale 
of mean flow to the time scale of unsteadiness), but also by the ratio of the time scale 
of unsteadiness to the characteristic time scale of turbulence. Further, since most 
of the interaction between the impressed oscillation and the turbulence structure is 
likely to occur within the Stokes layer, it is necessary to design the experiment care- 
fully so as to get a thick enough Stokes layer and yet keep the modulation frequency 
at  a value comparable to the characteristic turbulent frequency. 

The present study was directed towards obtaining experimental data on fully 
developed oscillatory pipe flow at transitional Reynolds numbers. The nature of the 
periodic flow was found to depend strongly on the nature of the steady flow a t  the mean 
Reynolds number. It was found that if the steady mean flow was fully turbulent (with 
an intermittency of unity), the flow would remain fully turbulent when the Reynolds 
number was modulated at  a frequency large enough to approach the characteristic 
turbulent frequency. On the other hand, if the steady mean flow was not turbulent but 
contained turbulent puffs at a low intermittency, the flow would tend to laminarize 
on periodic oscillation. Both these flow situations were studied in detail using laser- 
Doppler anemometry (LDA) together with a digital phase-averaging technique. 
Important features of the present experiments, particularly with regard to the 
turbulent unsteady flow, are (i) the oscillation frequency was high enough to be 
comparable to the characteristic turbulence frequency in the flow with the amplitude 
of flow modulation being large enough to be significant, and (ii) the viscous sublayer 
(2  mm) and Stokes sublayer (6  mm) were thick enough to permit detailed measure- 
ments in 8, region where the interaction of flow oscillation and turbulence have been 
found to be very strong. These features distinguish the present experiments from other 
basic unsteady turbulent flow experiments reported so far in the literature. 

17-2 
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FIGURE 1. Schematic layout of the experiment apparatus. 
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2. Experimental details 
2.1. The apparatus 

A test facility for producing periodic pipe flow at transitional Reynolds number was 
built for the present study. The facility used 'Eureka' oil - a clear fluid of kinematic 
viscosity, v = 1.384 x 10-5 m2 s-1 at 26 "C. A schematic layout of the apparatus is 
shown in figure 1.  A brief description of the apparatus is given below. A more detailed 
description can be found either in Tu (1978) or Ramaprian & Tu (1979). 

Oil from the constant head tank entered the copper tube of 50 mm internal diameter 
(D) and 8.8 m length (L)  through an inlet pipe and a bell shaped contraction. Static 
pressure taps of 1 mm diameter were provided at  regular intervals along the tube. 
The test section where velocity measurements were made was a 50mm internal 
diameter, 0.3 m long Plexiglas tube located at the end of the copper tube. The test 
section w a s  followed by another copper tube 0.3 m long closed at the downstream end. 
The oil came out through a pair of longitudinal rectangular slots of nominal size 
50 x 3 mm milled on the surface of this tube at two diametrically opposite locations. 
The exit area was varied by a profiled brass sleeve rotating over the slotted tube. 
The sleeve profile consisted of a sine wave of two cycles. The sleeve was rotated by a 
geared d.c. motor whose speed was electronically regulated to remain within 1 per 
cent of any preset speed in the range 1.2-55 r.p.m. It is seen that, with this design, 
the exit area variation would be a sinusoidal function of time with the variation 
going through 2 cycles during each revolution of the sleeve. A magnetic pickup was 
used to produce a pulse once during each revolution of the sleeve. This pulse was syn- 
chronized with the instant of maximum slot opening and was used as the reference 
signal during data acquisition and processing. The mean exit area could be adjusted 
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FIGURE 2 .  Variation of the crow sectional average velocity during a cycle: 0, quasi-steady; 
A, oscillatory flow a t  0.057 Hz (run 24) ; , oscillatory flow at 1.75 Hz (run 13).  Lines denote 
exact sine waves with corresponding amplitudes: - , quasi-steady; - - - , 0’057Hz; -.-, 
1.76 Hz. 

within limits by changing the axial location of the sleeve relative to the slots. I n  the 
present study, this location was chosen (after several trial runs) such that the time- 
mean flow Reynolds number 5 (defined as DmD/v) was about 2100 (corresponding to 
a time-mean cross-sectional average velocity Dm of about 0.55 m s-l). The sleeve 
profile was designed for an estimated discharge modulation amplitude of 0.35 x mean 
discharge. Later tests showed that the actual discharge modulation under quasi-steady 
conditions (i.e., at extremely low modulation frequencies) was, in fact, quite close to 
this value. With the present design, the flow was found to  be fully laminar a t  the 
minimum slot opening and fully turbulent a t  the maximum slot opening under steady 
or quasi-steady condition. Further, it was found (as expected) that a nearly sinusoidal 
discharge modulation could be obtained under quasi-steady conditions. This is, seen 
from figure 2, which shows the variation of the quasi-steady cross sectional average 
velocity, U,, (proportional to the quasi-steady discharge) with the phase angle 8, 
(measured with reference to the instant of maximum slot opening) during the modu- 
lation cycle. The data shown in this figure were obtained by measuring the steady 
flow discharge (using a measuring tank) a t  various$xed angular positions (0)  of the 
sleeve. The data are normalized with respect to their time average value ngm and, are 
compared with an exact sine curve having the same maximum and minimum values. 

When the discharge is modulated a t  a finite frequency by rotating the sleeve, the 
discharge variation during the cycle will differ from the quasi-steady distribution. 
This is mainly due to the effect of fluid inertia. As a consequence, the amplitude of 
modulation will decrease, the modulation will be distorted from the sinusoidal shape 
and the pressure a t  any point in the system will oscillate with a significant amplitude. 
These effects will increase with the frequency of flow oscillation. Further, a t  the higher 
oscillation frequencies, the discharge and pressure variations will, in general, be out 
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of phase with each other and with the exit area variation. The effect on the discharge, 
in particular, was, indeed found to follow the above trend. This can be seen typically 
from figure 2 where the variation of cross-sectional average velocity, U,,, in unsteady 
flow is plotted for two oscillation frequencies. The distortion from the sine wave is seen 
to be negligible at the lower frequency of 0.057 Hz but perceptible at the higher 
frequency of 1.75 Hz. It was, however, decided to ignore this distortion in the present 
study as it was not considered to be a critical factor for the purpose of the present 
investigation. 

2.2. Instrumentation and data acquisition 
The instantaneous velocity in the flow was measured using the LDA. The LDA system 
consisted of a 5 mW He-Ne laser illuminating a TSI (Thermo-Systems Inc.) optics, 
a photo-multiplier and a frequency tracker. In  addition, the system had a frequency- 
shift feature which enabled very low velocities and flow reversals to be studied. The 
LDA system could be traversed along a horizontal diameter of the test section, for 
obtaining the velocity profile across the test section. A detailed description of the 
LDA system and the traverse is given in Ramaprian & Tu (1979). The LDA was used 
in the dual beam mode. The measurement configuration used in the present experi- 
ments resulted in a measuring cross section about 1 x 0.5 mm, with the longer 
dimension located (unavoidably) along the radius. However, this poor spatial resolu- 
tion was not very serious, in view of the fact that the viscous-sublayer thickness in 
the flow waa about 2 nun. 

The LDA output is the instantaneous axial velocity, U as a function of time and 
can be decomposed as 

(1)  
(2) 

where 0 is the time-mean velocity a t  radius r and time t ,  u is the turbulent (random) 
velocity and (U) is the deterministic velocity or the sum of 0 and the periodic com- 
ponent Up. In  an unsteady flow, the deterministic velocity can be obtained by a 
process of ensemble averaging. In the particular case when the unsteady flow is 
periodic, ensemble averaging is equivalent to phase averaging; i.e., averaging over 
the values obtained at  identical values of r and 6 in a large number of oscillation cycles. 

In  the present experiments the data-acquisition system was programmed to sample 
the LDA output a t  the end of each prescribed sampling interval (AT), starting from 
the instant when the synchronizing reference signal from the magnetic pick up was 
received. The interval, AT was chosen to be approximately 1/100 the period of one 
sleeve revolution (and hence about 1/50 of the period of a cycle). A total of 100 sleeve 
revolutions (rather than oscillation cycles) were used for phase averaging a t  the higher 
frequency of 1.75 Hz studied. At the lower frequency of 0.057 Hz, 26 revolutions were 
used (since there was no turbulence to be measured in this case). The sampled data 
were digitized and processed to obtain the velocities D, (U> ,  (u2), etc. In each case, 
the experiments were repeated thrice and the results averaged over the three experi- 
ments. If the results in consecutive experiments differed significantly from one another, 
the experiments were repeated till three consecutive experiments gave nearly the 
same results. (Such repetitions were, however, rarely necessary.) The value of 
varied insignificantly among consecutive experiments, while the scatter in (U) was 

U(r ,  6,  t )  = D(r)  + Up(r, 6 )  + U(T ,  8, t )  
= (UC., 6) )  + u(r, 6, t ) ,  
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generally within 1 per cent and the scatter in uk (defined as (uz)*) within 5 per cent. 
The data acquisition program was designed to detect any 'drop-out' of the signal 
from the LDA and reject all the samples taken during that entire sleeve revolution. 
Data acquisition would then proceed until the required number of valid revolutions 
were sampled. However, with the use of frequency-shift feature of the LDA, there 
was virtually no problem of signal drop out and this feature of the program was rarely 
made use of. More details on data acquisition are given in Ramaprian & Tu (1979). 

The above scheme was also used for processing unsteady laminar flows, the value 
of u; in this case being used as a measure of the noise in the optics and electronics. 
It was found that u; ranged from 2-5 parts in 1000 in these cases, indicating the 
acceptability of the experimental procedure. 

2.3.  Experimental details 

As already mentioned, two aeries of experiments were carried out. In both the series, 
the steady flow had a Reynolds number of about 2900 a t  maximum slot opening 
(8 = 0"). The mean steady-flow Reynolds number was about 2100 and this occurred 
at 8 2 90". However, in the first series, the steady flow a t  B = 90" was found to be 
fully turbulent at  all times. In  fact, the intermittency of turbulence remained at unity 
for 8 5 100". When this flow was oscillated at the highest possible frequency of 1.75 Hz, 
the flow remained fully turbulent. Instantaneous velocity measurements were ob- 
tained across the pipe for this situation (run 13). A rough estimate of the turbulent 
burst frequency in this flow using the criterion of Rao, Narasimha & Radri Nara- 
yanan (1971) indicates a value of about 2 Hz. Thus the oscillation frequency can be 
expected to interact significantly with the turbulent structure in this flow. In the 
second series of experiments, while the steady flow at the maximum and minimum 
slot opening behaved exactly as in the first series, the mean flow at 8 = 90" exhibited 
an intermittent turbulent structure. The structure strongly resembled the puff-type 
transitional structure studied by Wygnanski & Champagne (1973). In fact, the steady 
flow became fully turbulent only at values of 8 5 60". When this flow was oscillated 
(at whatever frequency) it was found to laminarize with the intermittency of puffs 
dropping almost to zero. This is clearly seen from figure 3 where a photograph 
of the storage oscilloscope traces corresponding to the centre-line velocity signals 
obtained from the LDA under three different conditions are shown superimposed on 
one another. These are: (i) steady flow at 8 = O", Re = 2872 (fully turbulent); (ii) 
steady flow a t  8 = 180", Re = 1278 (fullylaminar); and (iii) oscillatory flowsat 0.057Hz 
between the above two Reynolds numbers (laminarized). The peak velocity in the 
oscillatory flow is different from the velocity in steady turbulent flow because the 
unsteady flow is laminar and hence has a different velocity distribution. Velocity 
measurements were made in this laminarized unsteady flow at oscillation frequencies 
of 1.75 Hz (run 23) and 0.057 Hz (run 24). These frequencies correspond to Strouhal 
numbers S (defined as 2rf DIDm) of 1.0 and 0.032 respectively. 

In  both the series, measurements of velocity distribution in the pipe were made 
for the steady flows at  8 = 0 and 8 = 180". In  addition, steady flow axial pressure 
drop data were obtained for several (fixed) angular positions, 8 of the sleeve. These 
measurements (reported in detail in Ramaprian & Tu 1979) indicated full development 
of the mean flow beyond x / D  = 100. They also confirmed that the apparatus was 
functioning normally and that the flow was transitional. Further, these steady flow 
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FIGURE 3. Oscilloscope traces of velocity signals from LDA (r = 0). The smooth horizontal 
trace corresponds to steady laminar flow (0  = 180") ; the hashed horizontal trace corresponds to 
steady turbulent flow (0 = O0)  ; the smooth sinusoidal trace corresponds to laminarized oscil- 
latory flow. 

experiments can be considered to approximate closely to quasi-steady experiments. 
They are used as a reference in the study of the unsteady flow behaviour. The use of 
these data instead of steady flow data from other sources is both necessary and de- 
sirable in view of the very low Reynolds numbers and transitional nature of the flow. 

3. Results and discussion 
3. I. Steady-$ow measurements 

3.1.1. Velocity distribution. The results of velocity measurement at 0 = 180" 
(minimum slot opening) and 8 = 0" (maximum slot opening) are shown in figure 4. 
In  each case, data obtained in both the series of experiments are shown even though 
fewer points are shown for series 2. This is considered adequate in view of the excellent 
repeatability observed between the two series of steady flow experiments. In  the case 
of laminar flow (6' = ISO"), the data are seen to agree well with the theoretical para- 
bolic profile. It is seen from the figure that the mean velocity profiles in turbulent flow 
obtained from the two series of experiments also indicate agreement with each other. 
The agreement between the two sets of data obtained with a gap of several months in 
between establishes the accuracy of the measurement procedure. It also confirms that 
the behaviour of the quasi-steady flow at both the maximum and minimum end of 
the oscillation cycle did not change even though the transitional character a t  inter- 
mediate Reynolds numbers had changed. 

The velocity profile for the turbulent flow a t  6' = 0" is shown in figure 5 in the usual 
wall-layer co-ordinate U+ ( = U / u * )  8s. Y+ [ = (1 - % / D )  Du,/Bv], u* being the shear 
velocity ( ~ , / p ) i  where 7, is the wall shear stress. The value of u* was obtained from 
the quasi-steady pressure drop and discharge data for 0 = 0" using the relation, 
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FIGURE 4. Distributions of mean and turbulent velocities in steady flow : A, run 1 1 ; A, run 2 1. 
Laminar flow at 0 = 180" (Re = 1278): 0, run 12; 0 ,  run 22. Turbulent flow a t  0 = 0" 
(Re = 2870): __ , theoretical parabolic profile for laminar flow. Turbulent intensity: 0, run 
12; - - -, data from Laufer (1954) for Re = 5 x lo5. 

The measured velocity distribution is compared with the universal law of the wall, 
namely, U+ = Y+ in the viscous sublayer and U+ = 5.75 log Y++ 5.5 in the fully 
turbulent region. The deviation of the experimental data from the universal log law 
is to be expected in view of the very low Reynolds number of the flow. On the other 
hand, the fact that the first dat,a point near the wall falls on the linear U+ = Y+ curve 
indicates not only that this point is in the viscous sublayer but also that the value of 
u* is accurate. 

3.1.2. Turbulence intensity distribution. Figure 4 introduced earlier, also shows the 

distribution of the r.m.s. intensity, u' (defined as (iG/02n (u2) do)*) of the longitudinal 

turbulent velocity fluctuations in the steady turbulent flow a t  0 = 0. The distribution 
is normalized using the velocity and length scales, u* and &D respectively. Consequent- 
ly, the distribution can be expected to show Reynolds number dependence in the inner 
region. This is, in fact, the case as is seen from the comparison with the data of Laufer 
(1954) obtained a t  a Reynolds number of 5 x  lo5. The distribution in the region 
0-5 < 7 = ( 1  - 2r/D) < I is seen to coincide reasonably well with Laufer's data while 
in the region (1 - 2r/D) < 0.5, a strong Reynolds-number effect is observed. In  fact, 
the large viscous region in the present case allows one to  observe the gradual decrease 
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FIQURE 5. Velocity distribution in steady flow in wall-layer co-ordinates : 
0 = 0 (maximum slot opening). 

~ 

of u' from a maximum towards zero at the wall, a feature which is usually difficult to 
observe in higher-Reynolds-number laboratory flows. The purpose of presenting the 
steady-flow turbulence distribution in figure 4 is to provide a basis for the comparison 
with the unsteady turbulent-flow data. It is clear that it is very important to make 
comparisons in approximately the same Reynolds-number range in order to arrive at  
reliable conclusions. 

3.2. Unsteady flow measurements 

3.2.1. Velocity distribution in unsteady flow. Figure 6 shows the distribution of the 
time-averaged velocity g across the pipe in the three runs 13,23 and 24. The velocities, 
in each case, are normalized with respect to the corresponding velocity a t  the pipe 
axis (Om,,). The distributions are compared with the quasi-steady velocity distribu- 
tions corresponding to 8 = 180" and 8 = 0". It is seen from the figure that the unsteady 
flows in run 23 and 24 that appeared to be laminar were, indeed, very nearly laminar 
i.e., they exhibit nearly parabolic velocity distributions. In  fully developed oscillatory 
laminar pipe flow of a Newtonian fluid, the time-mean velocity distribution should be 
identical to that of steady Poiseuille flow since the velocity field is determined from 
the linear equation 

(4) 
au lap aw iau [ ar2 r a,] at pax  + v  -+-- . -=  --- 

It is seen that, in the high frequency run 23, in which the intermittency of turbulent 
puffs was very small (as already mentioned), the time-mean unsteady flow behaves 
almost exactly like laminar flow. The deviation of the experimental data of run 24 
from the parabolic profile has been caused by the flow becoming turbulent with a 
larger intermittency than in run 23. It is, however, important to observe from figure 6 
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FIGURE 6. Distribution of the time-mean velocity across the pipe in unsteady flow. A, steady 
leminar flow ( 6  = 180"); -0-, steady turbulent flow (@ = 0"); -0-, unsteady turbulent 
flow atf = 1.76 H z  (run 13) ; a, unsteady lamimrized flow atf  = 1.75 Hz (run 23) ; A,unsteady 
laminarized flow at  f = 0.057 Hz (run 24) ; ~ , theoretical parabolic profile for laminar flow. 

that the effect of flow oscillation on the time-mean velocity gradient and hence the 
wall shear stress, is negligible in both these runs. 

When the oscillatory flow is turbulent, the total shear stress (7) distribution in the 
pipe is given by the linear equation 

and hence the distribution of time-averaged shear stress, ;i should be linear as in 
steady turbulent flow. However, since ;i is now given by 

(where u and v are the turbulent velocity fluctuations in the x and r directions, respec- 
tively), the velocity field is not determined by a linear equation. The time-averaged 
velocity distribution, and hence the time averaged wall shear stress need not, there- 
fore, be necessarily the same as in the steady flow a t  the mean Reynolds number. 
It is, in fact, seen from figure 6 that the time-mean velocity distribution in the unsteady 
turbulent flow of run 13 exhibits a point of inflexion near the wall and thus differs 
from the steady-state turbulence velocity profile. The time-mean velocity gradient at  
the wall is slightly larger than in the steady case resulting in a larger time-mean wall 
shear stress. This observation differs from those reported by previous investigators 
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FIQURE 7. Vtwiatttion of the periodic component of the velocity with phrase angle. 
(a) Run 13; (b )  run 23; (c) run 24. 

of oscillatory turbulent boundary layers, who concluded that unsteadiness has no 
effect on the time-mean properties (or even the turbulent structure) of the flow. 
However, as already mentioned, a significant difference between the present experi- 
ment and the earlier experiments is that the oscillation frequency in the present case 
is comparable to the characteristic turbulent frequency. 

Figure 7 presents the variation of the periodic component Up of the velocity through 
the oscillation cycle at  a few typical points across the pipe. The velocity is normalized 
with respect to the amplitude ( Uqmp)max of the quasi-steady cross sectional averaged 
periodic velocity. The variations are shown only for 700 degrees of oscillation cycle 
(slightly less than one full sleeve rotation), short record gaps being present (for reasons 
described in Ramaprian & Tu 1979) from 0-7-2" and 698-4-720". Also for run 13, the 
data are shown only for 600 degrees of oscillation cycle, due to some difficulties en- 
countered during data acquisition. These difficulties were subsequently removed before 
the second series of experiments were started. However, since data over only 360 
degrees of oscillation cycle are sufficient for the purpose of analysis, the loss of redun- 
dant data is not serious. In each of the figures 7 (a, b ,  c), the distributions of the un- 
steady cross sectional average periodic velocity, Urn, and quasi-steady cross sectional 
average periodic velocity, U,, (proportional to the effective modulation in exit area) 
are also shown for comparison. The latter curve is the same as the periodic part of the 
velocity distribution shown in figure 2. A comparison of the laminar flow data for 
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FIGURE 7 ( b ) .  For legend see facing page. 

runs 23 and 24 shows that the phase-wise variations are strongly dependent on the 
oscillation frequency. The variations appear to be very nearly sinusoidal a t  the lower 
frequency while significant distortion in the wave shape can be observed a t  the 
higher oscillation frequency. The distortion at the higher frequency is, as mentioned 
earlier, due to nonlinear effects. 

It is also clear from the figures 7 (a )  and (b)  that at  the higher oscillation frequency, 
there is a significant phase shift between the velocity variation and the exit area 
opening. Most of this phase shift is brought about by the global dynamics of the 
system and is observable as the phase shift of unsteady cross sectional average flow. 
However, there is also a relative phase shift between the local velocity and the cross 
sectional average velocity. The flow in the wall region leads the cross sectional average 
flow while the flow in the core region lags behind the average flow. Unfortunately, 
owing to the uncertainty in phase angle measurement ( +_ 3.5") and the distortion in 
the modulation profile, it is not possible to make a precise quantification of the phase 
differences nor is it possible to look for differences between the laminar and turbulent 
flow. 

Figures 8(a,  b,  c )  shows cross plots of the distribution of the periodic velocity, Up 
across the pipe for a few typical fixed phase angles in the oscillation cycle. It is seen 
that at  the higher oscillation frequency, the variations in Up are confined essentially 
to 9 5 0.25 (ie.,  the Stokes layer), the rest of the flow oscillating virtually as one 
solid mass at  all times. A t  the lower frequency, Up varies across the entire pipe at all 
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times. The responses of turbulent and laminar flows appear to be qualitatively similar. 
It is seen that even a t  the higher frequency, the Stokes layer is about 6 mm thick. 

Figure 9 shows the distribution of the 'amplitude', (Up),,, of the periodic velocity 
across the pipe for the three experiments. Since the velocity modulation is distorted 
from a sine wave especially a t  the higher frequency, it is not strictly appropriate to 
use the term 'amplitude' without making a formal harmonic analysis. However, in 
the present case, (Up),,, denotes one half of the peak to peak variation in the periodic 
velocity Up. In  the figure ( Up)ma, is normalized with respect to the amplitude (Ump)ma, 
of the cross sectional average periodic velocity. It is more clearly seen from this figure 
that a t  the higher frequency, the amplitude variations are confined to a small region 
(9 5 0.25) near the wall while a t  the lower frequency the variations extend over the 
entire pipe cross-section. The dominant effect of oscillation frequency is clearly seen 
from this figure. Also shown in this figure are the results computed from the exact 
solution of Uchida (1956) for fully developed laminar periodic flow in a pipe under the 
influence of a pressure gradient sinusoidally varying with time. The pressure gradient 
variation in the present experiments differed significantly from sinusoidal especially 
a t  the higher frequency. Yet, the experimental data for the laminar unsteady flows 
(runs 23 and 24) seem to agree reasonably well with the corresponding exact solutions. 
The somewhat larger discrepancy observed in the case of run 24 is possibly due to the 
intermittency effect mentioned earlier. It is interesting to note that the turbulent flow 
data (run 13) are not generally very different from the laminar flow data (run 23) a t  
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FIGURE 8. Distribution of the periodic component of the velocity acros  the pipe at  fixed phase 
angle: (a) in oscillating turbulent flow, f = 1.75 Hz (run 13); ( b )  in oscillating laminar flow, 
f = 1.75 HZ (run 23); ( c )  in oscillating laminar flow,$ = 0-057 H z  (run 24). 

the same frequency. It is, however, seen that the turbulent flow data exhibit a some- 
what larger overshoot in the Stokes layer. 

3.2.2. Effect of flow modulation on turbulence and transition. The data obtained in 
the two series of present experiments provide some insight into the effects of impressed 
unsteadiness on the structure of turbulence and transition in pipe flow. For convenience, 
the two series of experiments will be discussed one by one. 

( a )  Results of series 1 experiments: (turbulent unsteady flow). The distribution of the 
r.m.s. turbulent intensity u', normalized with respect to ii*t is shown in figure 10. 
Comparison with the steady flow data for 6 = 0 shows that in the oscillatory flow 
there is a slight decrease in the maximum turbulence intensity near the wall, while 
the turbulence intensity farther away from the wall is not affected. The near-wall 
region where the turbulent intensity is affected extends approximately over 25 per 
cent of the pipe radius and this region coincides with the Stokes layer where significant 
effects of flow oscillation are observed on the time-mean and periodic structures of the 
flow also. This result is in agreement with the conclusions of Acharya & Reynolds 
(1975) that the structure of turbulence is primarily affected within the Stokes layer. 
The distributions of the ensemble averaged turbulence intensity ub(6)  normalized 
with respect to the corresponding shear velocity ~ * ~ ( 6 )  are also shown in figure 10 

t The shear velocity u,,(B) in unsteady flow was obtained from the ensemble-average velocity 
gradient at  the wall. The velocity gradient at  the wall was calculated from the measured (V(0)) 
at the first point near the wall assuming a linear velocity distribution in the viscous sublayer 
at  all instants. This procedure was found to be generally satisfactory as verified from checks 
made in steady laminar and turbulent flow. In  these cases, the wall shear stress obtained by 
this method compared well (within 3 yo) with the value obtained from pressure drop measure- 
ments. From the ensemble-averaged value u*,, the time-averaged value ?& was obtained from 
the relation 

I r zn  



52 8 B. R. Ramaprian and Xhuen- Wei Tu 

1 .O 

0.8 

9 0.6 

0.4 

0.2 

0 

r 

( C )  204 
0" = 

302 352 403 

0 0 0 0 0 0 0 0 0.5 1.0 
Up(Uqmp)max 

FIGURES 8 ( b ,  c ) .  For legend see page 527. 

for a few typical fixed angles of the oscillation cycle. Large variations in the distri- 
butions from one another and from the distribution of u ' / U ,  indicate that the turbu- 
lence structure is highly disturbed from equilibrium. The variations in the relative 
turbulent intensity (U;/U*,) with time are shown in figure 1 1  for two typical locations 
across the pipe. These figures suggest that the flow was undergoing rapid structural 
distortion in time. Actually the wall shear stress (u*,) could nearly follow the changes 
through the discharge cycle while the turbulent u fluctuations could not. This is seen 
clearly from figure 11 which also shows the variation of u * ~  and the variation of u; 
(not normalized) a t  these two typical points in the pipe. It is seen that u * ~  oscillates 
with a slight phase lead with respect the cross-sectional average periodic velocity 
U,,, while uh remains practically constant throughout the oscillation cycle. Such a 
freezing of the turbulent normal stress can be expected to occur when the flow is 
subjected to rapid strain rates, i.e. when changes occur at  time scales comparable to 
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FIQURE 9. Distribution of the amplitude of the periodic component of velocity across the pipe. 
run 13 (f = 1.76 Hz);  a, run 23 (f = 1.75 Hz); A, run 24 (f = 0.057 Hz); __ , laminar 

theory from Uchida (1966). 

some important characteristic time scale of turbulence. In a wall-bounded flow, we 
can regard the turbulent burst frequency, f t  to determine such a characteristic time 
scale (at least near the wall). In the present case, the estimated burst frequency is 
about 2.3 Hz, (using the criterion am/f tD 5 of Rao et al. 1971). The estimate is 
rough but is sufficient to indicate that one can expect to find interaction between the 
external oscillation and the internal turbulence structure when the flow pulsates a t  a 
frequency of 1.75 Hz. Stress-freezing is well documented in rapidly accelerated steady 
flows but studies of rapidly decelerated steady flows are difficult to perform, since the 
flow in such cases would separate very quickly. One of the interesting features of the 
present experiments is that the flow experiences large pressure gradients of alternating 
sign but yet does not actually separate. An estimate of the severity of the pressure 
gradient in the present case can be made by calculating the value of the Clauser 
pressure-gradient parameter p defined by (neglecting the shear effects), 

Such a calculation shows that p varies from about - 40 to about + 40 during a cycle. 
The magnitudes of p attained during the cycle are comparable with the values for 
some of the severe adverse pressure gradient steady flows reported in the Proceedings 
of the Stanford Conference (Coles & Hirst 1968). Not only are the pressure gradients 
very large but they vary rapidly, the value of @/dt being of the order of 100 s-l 
(based on a variation in p from 40 to - 40 in half the period of oscillation). It is thus 
clear that the turbulent structure will be in a highly disturbed state. Hence, quasi- 
steady turbulence models based on local equilibrium assumption cannot be expected 
to describe the flow at such oscillation frequencies. 

The quantity which is of greater value than uf in understanding the structure of 
turbulence is the Reynolds shear stress -pZV. Unfortunately, on account of instru- 
mentation limitations, it was not possible to make direct measurements of the 



530 B. R. Ramaprian and Shuen- Wei Tu 

2.0 

14 . 
- 4  

0 0.5 
7) 

1 .o 

FIGURE 10. Distribution of the turbulent intensity across the pipe in run 13 (f = 1.76 Hz). 
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flow a t  0 = 0". Data points denote the ensemble-average turbulent intensity ui/u*, for the 
phase angles: 0, 6", @,45", 0 ,  90"; 0, 136"; A, 180'; A, 226'; W ,  270"; 0, 315". 

Reynolds shear stress. However, it is possible to compute it, perhaps with some loss 
of accuracy, from the measured wall shear stress and velocity distribution. For this 
purpose, we write the instantaneous x-momentum equation for pipe flow as 

at7 aU aU aP 1 a(7r) p-+pu- +pv- = --+-- 
at ax ar ax r ar 

where V is the instantaneous velocity in the radial direction. Performing an ensemble 
average on this equation, one gets, for fully developed unsteady turbulent flow, 

where (7) = Tlaminar - P(UV>* (10) 
We define - ~(uv) as the ensemble-averaged Reynolds shear stress. Multiplying both 
sides of the equation (9) by 271r and integrating across the pipe, and eliminating 
aplax, one gets (after inserting the phase average notations introduced earlier) 

and 
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FIQURE 11. Variation of the longitudinal component of the turbulent velocity with phase angle 
in oscillatory flow at  f = 1.75 Hz. (a) T = 0; (b)  T = 23.4 mm (2 mm from the wall). 
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FIGURE 12. Variation of the Reynolds shear stress with phase angle in oscillatory flow, 
(a )  1 mm from the wall; (b )  2 m from the wall; (c )  10 mm from the wall. 

The ensemble- (phase-) averaged Reynolds shear stress - (uv) was obtained from 
equations (1  1) and (12) using measured velocity and wall shear stress data. The process 
required differentiation with respect to time and integration across the pipe both of 
which were performed numerically on a computer. The velocity-time data were 
smoothed in order to reduce the numerical noise in differentiation. The procedure was 
found to work reasonably well because the velocity values were available at  very 
close time intervals (50 values per cycle), velocity gradients in the radial direction 
were not severe (owing to the low Reynolds number of the flow), sufficient cycles 
were used for phase averaging (effectively 300) and lastly, the three terms in equation 
(12) were all of similar order of magnitude. 

Variation of the ensemble averaged Reynolds shear stress during the cycle is shown 
in figures 12(a, b, c) for three typical locations in the pipe, viz. 1, 2 and 10 mm from 
the wall. Although there is some scatter in the data, the results are still good enough 
to allow one to arrive a t  meaningful conclusions especially in the region of flow where 
the Reynolds shear stress is significant. Very near the wall, (uv) shows a cyclical 
variation but lags behind Urn (and hence behind u*p also). As the distance from the 
wall increases, the amplitude of variation of (uv) decreases until it becomes almost 
indistinguishable from scatter beyond the Stokes layer (as seen from figure 12 c). The 
well-defined cyclical variation of (uv),  in the inner layer (figures 12a, b )  is in contrast 
to the frozen structure of ub. This suggests that the modulation in (uv) might have 
originated from modulations in the ensemble-averaged intensity, vb. This is possible 
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FIGURE 12(b).  For legend see facing page. 

since the v fluctuations are likely to be of finer scale than the u fluctuations (by a 
facior of nearly 5 as observed by Ramaprian 1975) and hence can respond more 
readily to  the impressed oscillations. Since the time scale gets larger as the distance 
from the wall increases, the response of (uv) must be expected to  diminish eventually 
in the core region. The nearly frozen structure of (uv) in the core region (figure 12c) 
thus indicates rapid strain rates. The departure from local equilibrium is again seen 
from the variations in ( U V ) / U ~ ~  during the oscillation cycle. 

Figure 13(a, b, c, d )  are cross plots of the above data and show some typical dis- 
tributions of the total, laminar and ensemble-averaged Reynolds shear stresses, 
across the pipe for fixed phase angles during the cycle. The distributions are nor- 
malized using the relevant inner-layer scales of velocity (u*,) and length ( V / U * ~ ) .  

The large variations in the distribution of the stresses from one point in the cycle to 
the other (seen more clearly from these figures) again indicate that the turbulence 
structure is far from equilibrium and hence cannot be described by quasi-steady 
models. Figure 14 shows the time-averaged distributions of each of the above stresses 
using ?I* as the scaling velocity. These distributions were obtained by averaging the 
computed distributions at  50 phase positions in the cycle. It is seen that except for 
a slight discrepancy near the wall, the time-averaged total shear stress T shows the 
expected linear distribution. This indicates that there were no significant errors in 
the numerical procedure used for calculating the shear stresses from the experimental 
data. Some of the important features pertaining to figures 13 and 14 that require 
comments are the following. 

(i) The laminar shear stress is significant up to a considerable distance from the 
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wall. This is to be expected in view of the low Reynolds number of the flow. 
(ii) The time-averaged turbulent shear stress reaches a maximum a t  about 6 mm 

(7 = 0-25) from the wall i.e., a t  about the same location where ut reaches a maximum. 
It is important to note that this is within the Stokes layer. 

(iii) The time-averaged laminar shear stress distribution exhibits a local minimum 
near the wall. This is due to the presence of a point of inflexion in the time-mean 
velocity profile. 

(iv) The distribution of the time-mean Reynolds shear stress also exhibits a kink 
within the Stokes layer. Also, it  is observed that, in the region very close to the wall, 
the time-mean Reynolds shear stress attains a value larger than in steady flow. 

(v) The time-mean distributions of the stresses are not significantly different from 
the corresponding distributions in steady flow, in the region beyond the Stokes layer. 
However, by affecting the distributions within the Stokes layer, the imposed un- 
steadiness produces an increase in the time-mean velocity gradient at the wall and 
hence increases the wall shear stress. This is seen from figures 11 (a,  b ) ,  where the 
quasi-steady mean value, u*- (obtained from pressure drop measurements), is shown 
as a horizontal dashed line against the distribution of u*p in unsteady flow. The time- 
mean value of u*p is clearly larger than the quasi-steady mean value of u*. 

The quantity, Ep = IoR ((7) y)] 27rr dr,  represents the rate of work done per 

unit length of pipe by the shear stress and hence its average value over an oscillation 
cycle represents the power loss in the pipe. The term Ep normalized with respect to 
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FIGURE 13. Distribution of total, laminar and Reynolds shear stresses across the pipe in wall- 
layer co-ordinates at prescribed phase angles. (a) 8 = 77", ( b )  8 = 160", (c) 8 = 212", ( d )  
8 = 340". -*-, total shear stress; -0-, laminar shear 'stress; -A-, Reynolds shear 
etreas. The stresses are normalized with respect to the wall shear stress at  the corresponding 
phase angle. 



536 

3 . n 

32 
m k  
'5, 

B .  R. Ramuprian and Shuen- Wei Tu 

0 0.5 1 .o 
1) 

FIGURE 14. Distribution of the time-averaged total, laminar and Reynolds shear stresses across 
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FIGURE 15. Variation of the rate of shear work with the phase angle. 0, data from unsteady 
turbulent flow,f = 1.75 Hz (run 13) ; A, based on quasi-steady Blasius relation, h = 0.3165 Re&; 

, based on quasi-steady pressure drop measurements in actual transitional flow. 
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( p a z m n D / 4 )  is shown in figure 15 as a function of the phase angle. The corresponding 
power loss in a hypothetical quasi-steady turbulent flow can be obtained for the same 
Reynolds number modulation using the Blasius relation, h = 0.3165 Re-4. Also, for 
the actual transitional quasi-steady flow, the power loss for the same Reynolds number 
can be obtained from the measured quasi-steady pressure drop. Both these distribu- 
tions are also shown in figure 15. It is seen that flow oscillation in run 13 a t  a high 
frequency results in an increase in average power loss when compared with the quasi- 
steady transitional flow. This is, however, to be expected since the unsteady flow is 
fully turbulent during the entire cycle, whereas the quasi-steady flow is not. However, 
it  is significant to note that the unsteady flow has a slightly higher average power loss 
when compared to the hypothetical fully turbulent quasi-steady flow also. 

(b)  Results of series 2 experiments: (laminarized unsteady f low). During the second 
series of experiments, the unsteady flow remained nearly laminar. Since this was a 
very significant observation, it was carefully verified to insure that the laminariza- 
tion was not due to any obvious reasons such as an increase in fluid viscosity, reduction 
in flow velocity, etc. Starting from a fully turbulent flow a t  the fully open slot position, 
the flow could be laminarized by just rotating the sleeve at  the lowest possible speed 
(0.047 Hz). 

A careful study of the oscilloscope traces of the velocity signal a t  several oscillation 
frequencies indicated, however, that laminarization was not always complete, and 
that the oscillatory flow did, in fact, become turbulent at times. The intermittency 
of this occurrence depended on the oscillation frequency. In  order to make a more 
detailed study of this phenomenon, several long-time records of the LDA signal were 
obtained using a strip chart recorder. The record length in all the cases was equal to 
300 cycles or 5 minutes whichever was longer. Records were obtained for r = 0 and 
r = 18.4 mm. Similar records were obtained in quasi-steady flow also for comparison. 
A few typical records are shown in figures 16 and 17. It is seen that the flow does 
become turbulent several times during the duration of the record. Estimating the 
intermittency of turbulence from such records is no doubt difficult and subjective; 
particularly when turbulent and oscillation frequencies are not well separated. The 
following procedure was arbitrarily selected for making a rough estimate of the 
intermittency. The procedure is based on the observation (and assumption) that 
whenever the flow became turbulent, its velocity level would jump upwards or down- 
ward from the laminar value depending on whether the point under consideration 
was in the wall region or on the centre-line. In both the cases, a distortion would be 
observed in the velocity signal recorded on the strip chart. The dynamic response of 
the recorder (5 Hz) was adequate for indicating this distortion. A short length of the 
laminar record traced out on a transparent sheet would be moved over the record and 
portions of the record that did not coincide with the laminar record would be marked 
out as turbulent intervals. The intervals marked T in figure 17 correspond to typical 
turbulent intervals. The intermittency factor, y wasdefined as the ratio of the turbulent 
interval to the total record length. In the case of steady flow, the turbulent intervals 
could be easily recognized without much ambiguity. 

The intermittency factor is plotted in figure 18 for quasi-steady flow as a function 
of quasi-steady Reynolds number. It is seen that the mean quasi-steady flow (8 = go", 
i.e. Re 2100) has an intermittency of about 0.2. The intermittency factor for oscil- 
latory flow is shown in figure 19 as a function of oscillation frequency. A parameter 
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FIGURE 16. Typical strip chart records of the LDA output signal in steady flow 
from experimental series 2. (a)-(f) r = 18.4 mm. (g)-(j) c = 0. 

(4 
FIGURE 17. Typical strip chart records of the LDA output signal in oscillatory flow from experi- 
ment series 2. For r = 0, (a) f = 0.23 Hz, (a) f = 0.067 Hz. For r = 18.4 mm, (c) f = 0.23 Hz, 
( d )  f = 0.067 Ha. Intervals marked T denote periods when the velocity trace is distorted from 
the normal laminar shape (shown by clotted lines) and are hence assumed to represent durations 
of turbulent puffs. (Not all turbulent intervals are marked.) 
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often used in characterizing laminar oscillatory pipe flows is the Stokes number R 
defined as [D/2(2nf /v)*]. It is seen that R is proportional to the ratio of the pipe radius 
to the thickness of the Stokes layer. The values of R are also shown in figure 19. The 
data for unsteady transitional flow show some interesting trends. The intermittency 
is very low at either end of the frequency range studied (R = 4-22). However, it 
increases fairly significantly and appears to reach a maximum around an oscillation 
frequency of about 0.4 Hz (Q z 12). This maximum intermittency factor attained, 
is not very small and, at r = 18-4 mm, is indeed comparable to that of the mean 
quasi-steady flow. Lastly, the data indicate different values for intermittency near 
the wall and at  the centre. It is interesting to note that Yellin (1966) also observed 
that when transition occurred in pulsatile flows, the disturbances were typically 
restricted to the core. However, the authors have no explanation a t  this time for this 
behaviour of the flow. The other aspects of transition in oscillatory flows are examined 
in some detail below. 

Wygnanski & Champagne (1973) have reported detailed study of the steady 
transitional pipe flow. They divide intermittent transitional turbulence into two 
categories - the ‘puff’ type and the ‘slug ’ type. Puffs are caused by large disturbances 
a t  the inlet region of the pipe and are actually remnants of a partial relaminarization 
process. Slugs, on the other hand, originate from the instability of the boundary layer 
and represent various stages of amplification of these disturbances. The puffs usually 
occur in the Reynolds number range of 2000-2700 while the slugs appear generally 
at  very much larger Reynolds numbers. The intermittency measurements in steady 
flow in the present case are compared in figure 18 with the puff flow data from 
Wygnanski & champagne. The qualitative agreement between the two sets of data 
suggests that the present transitional flow can be regarded as a ‘puff ’-type flow. This 
is further borne out by the fact that the turbulent puffs are of approximately the same 
intensity near the wall as at  the centre-line (as seen from the strip chart record), 
unlike a slug-type flow which is known to exhibit an increase in intensity from the 
centre-line to the wall. It may be noted also that the flow is fully turbulent at  about 
Re = 2700. 

The development of turbulence through a puff-type transition process does not 
depend on shear layer instability near the pipe wall since the disturbance is provided 
by the inlet conditions but depends on the existence of a Reynolds number above a 
critical value so that the initial turbulence can be sustained. This threshold critical 
value is about 2000 and transition to turbulence can not occur below this Reynolds 
number. 

In a flow subjected to a favourable pressure gradient, this critical Reynolds 
number is known to increase. But, in an adverse pressure gradient, it will not decrease 
significantly below the threshold value. Hence, if the Reynolds number of flow oscil- 
lates around 2000, the net effect would be an increase in the critical Reynolds number 
and hence a partial or complete laminarization of the initial turbulent puffs. The 
increase in the critical Reynolds number will be larger a t  larger favourable pressure 
gradients and hence one would expect to find a greater degree of laminarization as 
the oscillation frequency increases. This is, exactly what is observed in figure I9 as a 
decrease in the intermittency in the range of 0.4 Hz-1.75 Hz (R = 12-22) with the 
flow being almost completely laminar at  1.75 Hz. The existence of a maximum inter- 
mittency (almost equal to the intermittency in the mean steady flow) at  about 0.4 Hz 
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FIGURE 19. The intermittency of turbulent puffs in oecillatory flow from experiment series 2. 
-a-, r = Omm; ..-A- ... r = 18.4mm; ---- , mean quasi-steady flow at Re = 2100 
(0 = 90"). 
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(Q r 12) appears somewhat to contradict the above argument. It is, however, im- 
portant to note that at low frequencies, (0-0.4 Hz), (Q = 0-12) the favourable 
pressure gradients are very small (at the amplitude of modulation employed) and 
consequently, the effect on the critical Reynolds number is negligibly small at these 
frequencies. On the other hand, the extent of laminarization of the puffs depends not 
only on the critical Reynolds number but also on the length of time in a cycle the puffs 
are exposed to a Reynolds number lower than the critical Reynolds number. At low 
frequencies the latter effect becomes dominant and since the residence time of the 
puffs below the critical Reynolds number increases as the oscillation frequency is 
reduced, the intermittency of puffs would decrease with frequency in this range. The 
results in this range agree qualitatively with those of Sarpkaya (1966) whose experi- 
ments extended over the range Q = 4-7.8. He found that a t  small amplitudes of 
modulation ( A  = 0.2-0.3) there was only a slight increase in critical Reynolds number 
above the steady state value and that increase in the oscillation frequency in this 
range reduced the rise in critical Reynolds number. Sarpkaya noticed negligible 
effect of oscillation in the transition characteristics a t  Q = 7.8 (which, incidentally, 
he regarded as 'rapid' oscillation). It is interesting to note that a t  about 0.4 Hz 
corresponding to Q 12 the present unsteady flow exhibits the maximum inter- 
mittency. The present observations are thus in qualitative agreement with those of 
Sarpkaya. There is, however, quantitative disagreement between the present data 
and those of Sarpkaya with respect to the actual magnitudes of the critical Reynolds 
number a t  the various values of Q. This is due largely to the difference between the 
definitions of critical Reynolds number used in the two cases. In  the present case, the 
critical Reynolds number is taken to be the Reynolds number at which the puffs 
(external disturbances) disappear whereas Sarpkaya defined it as the Reynolds number 
at  which the external disturbances cease to amplify. It is thus clear that the present 
definition describes the lower bound for the puff-type transition process. 

The major difficulty with studies connected with puff-type transition is that the 
process is very sensitive to the nature of external disturbances and other ambient 
conditions. It is thus very difficult to find repeatability in observations over a period 
of time. This is especially true when an additional factor, namely flow oscillation, is 
introduced. This has been clearly demonstrated by the two series of experiments 
reported in this paper. The two series gave entirely different results under what 
apparently appeared to be identical conditions. It is worth examining the reasons for 
this at least in a qualitative way. As mentioned already, the mean steady flow (0 = 90") 
was fully turbulent in the series 1 experiments. In fact, it  was fully turbulent even at  
0 = 100" (corresponding to Re 2000). Unfortunately, intermittency measurements 
were not made in these series. However, one can visualize (without much error) the 
intermittency variation with Reynolds number to be as shown in figure 18. It is very 
clear that in this flow, transition occurred within a very narrow range of Reynolds 
numbers, unlike in the second series of experiments in which it was spread over a 
much wider range of Reynolds numbers. The reason for this difference in behaviour 
between the two flows is not known. However, the two intermittency distributions 
shown in figure 18 for the two series can be used to explain qualitatively the observed 
difference in response of the flow to oscillation a t  a high frequency in the two cases. 
Flow oscillation at  a high frequency would raise the critical Reynolds number from 
its value of about 2000 at quasi-steady state by an amount, say, A Re. This is equivalent 
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to moving the operating line, i.e. mean flow Reynolds number of the unsteady flow 
to the left by A Re in figure 18. It is seen that in the series 2 experiments, the new 
operating line corresponds to a laminarized flow (of very small intermittency) while 
in the series 1 experiments, it corresponds to fully turbulent flow (of intermittency 1). 
It is to be mentioned here that laminarized oscillatory flow can be observed only under 
very restricted conditions. These include puff-type transition (i.e., transition brought 
about by inlet disturbances), a relatively small intermittency of puffs at  the mean 
Reynolds number and either strong pressure gradient fluctuations (high frequency, 
large amplitude oscillation), or large puff-residence time (long enough pipe). These 
conditions are often found in the pulsatile flow of blood in the mammalian aorta and 
hence laminarization of the flow can be expected to occur in such cases. This is, in 
fact, corroborated by some of the recent in-vivo aorta experiments mentioned at the 
beginning of this paper. 

4. Conclusions 
The present study has led to the following conclusions. 

(i) Periodic oscillation of discharge tends to increase the critical Reynolds number 
of puff-type transitional pipe flow. Under certain conditions, the transitional flow may 
be laminarized on periodic oscillation. For a given amplitude of flow modulation the 
extent of laminarization depends on factors such as the intermittency of puffs in the 
quasi-steady mean flow, the oscillation frequency and the residence time of the puffs 
in the pipe. 

(ii) The laminarized periodic flow behaves very much like laminar periodic flow. 
For example, the time-mean flow properties remain unchanged from those of quasi- 
steady mean flow and the phase lag and amplitude of the periodic velocity component 
depend strongly on the Strouhal number. 

(iii) When the oscillatory flow is fully turbulent, its periodic structure still quali- 
tatively resembles that of oscillatory laminar flow at the same Strouhal number. 
However, the behaviour of the oscillatory turbulent flow is also influenced by an 
additional parameter, namely the ratio of the oscillation frequency to some character- 
istic frequency of turbulence. When this ratio is of the order unity, the oscillations 
interact with the turbulent structure. Important quantitative differences can be 
observed between laminar and turbulent flows at such interactive oscillatory fre- 
quencies. For example, the time-mean velocity profile in the oscillatory flow exhibits 
a point of inflexion near the wall, and the time-mean wall shear stress and power loss 
increase from their quasi-steady values. Also, the periodic velocity component 
exhibits an overshoot in the Stokes layer, the magnitude of the overshoot being larger 
than in laminar oscillatory flows a t  the same Strouhal number. 

(iv) At the interactive frequency of oscillation, mentioned above, the ensemble- 
averaged turbulence intensity is frozen everywhere in the pipe. The ensemble averaged 
Reynolds shear stress is able to follow the oscillation cycle (with some lag) only very 
close to the wall. However, beyond the Stokes layer, it is also frozen at  some averaged 
value. The stress freezing is brought about by the large and rapidly varying strain 
rates. The ensemble-averaged Reynolds stress does not scale with the corresponding 
ensemble-averaged wall shear stress indicating significant departures from local 
structural equilibrium. 
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As mentioned at the very beginning, the previous experiments on periodic turbulent 
flows have generally led to the conclusion that impressed flow oscillation has no effect 
on the time-mean properties of the flow. Predictions based on some quasi-steady 
turbulence models have also supported this conclusion. The observed effect of flow 
oscillation on the time-mean flow in the present experiments is thus a new and signi- 
ficant result. While it is consistent with the presence of rapid strain rates associated 
with the high oscillation frequency of the flow and the attendant stress freezing phe- 
nomenon, it is, nevertheless, important to perform more experiments (preferably at 
much higher Reynolds numbers) to corroborate this result. 
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